Jak przerobić pierwiastki do wykorzystania w schemacie Hornera Pk215: W jaki sposób mogę przerobić przykładowe pierwiastki aby sprowadzić je do (x − liczba)? Jakie operacje na nich wykonać Q(x) = x2+ 1 Q(x) = (x+ 2)(x−3)
7 lis 22:58
ABC: nie za bardzo wiadomo o co ci chodzi w tym pytaniu
7 lis 23:01
Pk215: @ABC Przykładowo, wiem, że (x2 + 1) jest pierwiastkiem pewnego wielomianu, czy jest możliwość sprowadzenia tego (x2 + 1) do postaci (x − coś) aby wykorzystać schemat Hornera czy w takim przypadku w celu obliczenia reszty i ilorazu wielomianu przez ten wielomian muszę wykorzystać pisemne dzielenie wielomianu?
7 lis 23:08
ABC: "Przykładowo, wiem, że (x2 + 1) jest pierwiastkiem pewnego wielomianu" x2+1 może być dzielnikiem pewnego wielomianu a nie pierwiastkiem schemat Hornera w postaci najczęściej spotykanej jest tylko dla dzielenia przez dwumian (x−a) ale istnieją jego wersje dla dzielenia przez trójmian kwadratowy itd. ale w polskich książkach nie spotkałem jeszcze porządnego rozpisania ich
7 lis 23:16
Pk215: Dzięki za pomoc, nie będę kombinował po prostu podzielę pisemnie
7 lis 23:19